Abstract
The biological response of osteoblast cells to implant materials depends on the topography and physico-chemistry of the implant surface and this determines the cell behavior such as shaping, adhesion and proliferation, and finally the cell fate. In this study, titanium (Ti) was anodized to create different topographies of titania nanotubes (TNTs) to investigate the cell behavior to them. TNTs with and without a highly ordered nanoporous layer on their top surface were fabricated using two-step and one-step anodizing processes, respectively. The TNTs without a highly ordered nanoporous layer on the top surface exhibited a rougher surface, higher surface energy and better hydrophilicity than the TNTs with such a layer. Osteoblast-like cells (SaOS2) were used to assess the biocompatibility of the TNTs with different topographies in comparison to bare cp-Ti. Results indicated that TNTs can enhance the proliferation and adhesion of osteoblast-like cells. TNTs without a highly ordered nanoporous layer exhibited better biocompatibility than the TNTs covered by such a nanoporous layer. Cell morphology observation using confocal microscopy and SEM indicated that SaOS2 cells that were adhered to the TNTs without the highly ordered nanoporous layer showed the longest filopodia compared to TNTs with a highly ordered nanoporous layer and bare cp-Ti.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.