Abstract

BackgroundTissue-engineered bone may be developed by seeding the cells capable of both osteogenesis and vascularization on biocompatible composite scaffolds. The current study investigated the performance of mice bone marrow-derived osteogenic cells and endothelial cells as seeded on hydroxyapatite (HA) and poly-ε-caprolactone (PCL) composite scaffolds.MethodsMononuclear cells were induced to osteoblasts and endothelial cells respectively, which were defined by the expression of osteocalcin, alkaline phosphatase (ALP), and deposits of calcium-containing crystal for osteoblasts, or by the expression of vascular endothelial growth factor receptor-2 (VEGFR-2) and von Willebrand factor (vWF), and the formation of a capillary network in Matrigel™ for endothelial cells. Both types of cell were seeded respectively on PCL-HA scaffolds at HA to PCL weight ratio of 1:1, 1:4, or 0:1 and were evaluated using scanning electron microscopy, ALP activity (of osteoblasts) and nitric oxide production (of endothelial cells) plus the assessment of cell viability.ResultsThe results indicated that HA led to a positive stimulation of osteoblasts viability and ALP activity, while HA showed less influence on endothelial cells viability. An elevated nitric oxide production of endothelial cells was observed in HA-containing group.ConclusionSupplement of HA into PCL improved biocompatible for bone marrow-derived osteoblasts and endothelial cells. The PCL-HA composite integrating with two types of cells may provide a useful system for tissue-engineered bone grafts with vascularization.

Highlights

  • Tissue-engineered bone may be developed by seeding the cells capable of both osteogenesis and vascularization on biocompatible composite scaffolds

  • These cells were identified by positive staining for alkaline phosphatase (ALP) (Figure 2B), which indicated that the induced cells possessed distinguishable osteoblastic phenotype

  • To demonstrate the ability of cells to mineralize matrix, cells cultured on Petri dishes were subjected to von Kossa stain to reveal calcium deposition (Figure 2C) where the darkly stained mineralized nodule were visualized by silver nitrate, indicating normal osteoblasts function in conditioned culture

Read more

Summary

Introduction

Tissue-engineered bone may be developed by seeding the cells capable of both osteogenesis and vascularization on biocompatible composite scaffolds. The current study investigated the performance of mice bone marrow-derived osteogenic cells and endothelial cells as seeded on hydroxyapatite (HA) and poly-ε-caprolactone (PCL) composite scaffolds. Bone marrow stromal cells (MSCs) are multipotent stem cells originating from the bone marrow stroma, and represent a promising cell source for bone tissue engineering. They can be harvested, expanded in vitro and induced to differentiate to bone-forming cells [9]. The objective of this study was to evaluate the biocompatibility of the HA-PCL biomaterials to both bone marrow-derived osteogenic and endothelial cells

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.