Abstract

Foley urinary catheters were coated by chlorhexidine-loaded micelles and chlorhexidine-loaded nanospheres. In our prior study, the nanocoating of Foley urinary catheter was investigated for chlorhexidine-release study, degradation, antibacterial evaluation, and cytotoxicity assessment. These studies presented the 1 month antibacterial property of nanocoating deposited via the layers of micelles and nanospheres. In this study, we evaluated the biocompatibility of these catheters, including hemocompatibility, skin irritation, skin sensitization, and stability during the age of coated urinary catheter. Results demonstrated that coated urinary catheters presented slight hemolysis, whereas skin irritation on rabbit and skin sensitization on Dunkin Hartley guinea pig showed no signs of dermal toxicity, which indicated that inflammation, redness, and swelling did not occur. Moreover, the stability of coated urinary catheters during storage indicated no change in chlorhexidine peaks by high performance liquid chromatography. Information from these studies supports the biocompatibility of coated urinary catheters via nanocoating and their use as indwelling devices to prevent urinary tract infections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.