Abstract

Atenolol (ATL), a kind of largely used beta-blockers, has been widely detected in the aquatic environment, which could cause adverse impact on human beings. In this study, bismuth oxychloride (BiOCl) photocatalyst was synthesized and applied to remove ATL in the aqueous system under simulated natural light. Emphasis was laid on the reaction kinetics and the impact of natural organic matter (NOM) (0–20 mg/L). Possible transformation pathways were systematically investigated based on identification of reaction products via liquid chromatography-mass spectrometry (LC-MS). As a consequence, BiOCl presents highly photocatalytic efficiency yielding up to nearly 100% ATL conversion after 60 min of interaction, together with fairly high photostability evidenced by considerably efficient removal of ATL after 10 catalytic cycles. Four kinds of possible products are detected using LC-MS in the process of reaction, indicating possible transformation ways of ATL photocatalysis. NOM has an inhibiting impact on the removal of ATL and influences the products distribution. This study provides an emerging nanocatalyst for ATL photodegradation and could eventually lead to development of novel methods to control pharmaceutical contamination in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.