Abstract

The accumulation of sodium chloride (NaCl) in soil is a worldwide problem with detrimental effects on the survival of soil animals. The effects of NaCl on earthworms remain unclear. Here, we show that the growth rate, cocoon production rate, annetocin precursor (ANN) mRNA level, and superoxide dismutase and catalase activities in earthworms were reduced under NaCl stress, whereas the mortality rate, reactive oxygen species (ROS) and malondialdehyde activity level increased. Histological damage to the earthworm body wall and intestine were observed under NaCl stress. NaCl stress increased DNA damage in the seminal vesicle and coelomocytes. The mRNA level of lumbrokinase, 1,3-beta-glucanse, coelomic cytolytic factor (CCF1), and alpha-amylase was significantly down-regulated, whereas that of earthworm excitatory peptides2 (EEP2) was up-regulated. From 16 S rRNA sequencing, the earthworm gut microbiota diversity decreased under NaCl stress. However, Verminephrobacter, Kluyvera, Lactobacillus, and Ochrobactrum increased under NaCl stress. These findings contribute to the risk assessment of the salt stress on soil organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call