Abstract
Biochemical analysis of the H-2K-gene product from the MHC mutant strain bml and from the C57BL/6 parent strain has been carried out in order to characterize the structural differences between parent and mutant K-gene products. Based on comparative tryptic peptide mapping of the cyanogen bromide fragments from these glycoproteins, two peptide differences were localized to the CN-Ia fragment. Partial amino-acid sequence analysis revealed two alterations in the primary structure of Kbml involving substitutions of tyrosine for arginine at position 155, and tyrosine for leucine at position 156. Both of these amino-acid replacements require a minimum of two nucleotide base changes at the nucleic acid level. These changes were the only alterations noted differentiating the Kbml and Kb glycoproteins. However, because our techniques allow us to analyze only 75 to 80 percent of the extra cellular portion of H-2Kb, it is possible there are other undetected changes. Nonetheless, the biochemical data are consistent with the hypothesis that the structural alterations noted in the Kbml mutant glycoprotein are directly related to the observed immunological specificity relative to the parent Kb molecule. Peptide comparisons of the Kb molecules of two C57BL/6 sublines and of the H-2b lymphoblastoid cell line, EL-4, disclosed no difference.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have