Abstract

Strains of sheep louse Bovicola ovis (Schrank) with various levels of resistance to pyrethroid and one strain with high degree of resistance to organophosphate (OP) insecticides were used to investigate the biochemical mechanisms of insecticide resistance, i.e., enhanced levels of general esterases, specific acetylcholinesterases (AChE), glutathione S-transferase (GST), and mixed function oxidases. Native gel electrophoresis combined with quantitative enzyme assays showed analogous expression profiles of several esterase isozymes in all the strains tested. The determination of the sensitivity of each esterase isozyme to five inhibitors (acetylthiocholine iodide, butyrylthiocholine iodide, paraoxon eserine sulfate, and pCMB) led to the identification of nine esterases in the B. ovis strain. Gel electrophoresis results are supported by enzyme assay studies where, except for the OP resistant strain, no differences in esterase activities were detected in all the pyrethroid resistant and susceptible strains assayed. Statistical analyses demonstrated that some strains have elevated GST activities compared to the susceptible reference strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.