Abstract
The HtrA proteins due to their proteolytic, and in many cases chaperone activity, efficiently counteract consequences of stressful conditions. In the environmental bacterium and nosocomial pathogen Stenotrophomonas maltophilia HtrA (HtrASm) is induced as a part of adaptive response to host temperature (37°C).We examined the biochemical properties of HtrASm and compared them with those of model HtrAEc from Escherichia coli. We found that HtrASm is a protease and chaperone that operates over a wide range of pH and is highly active at temperatures between 35 and 37°C. The temperature-sensitive activity corresponded well with the lower thermal stability of the protein and weaker stability of the oligomer. Interestingly, the enzyme shows slightly different substrate cleavage specificity when compared to other bacterial HtrAs. A computational model of the three-dimensional structure of HtrASm indicates differences in the S1 substrate specificity pocket and suggests weaker inter-trimer interactions when compared to HtrAEc.The observed features of HtrASm suggest that this protein may play a protective role under stressful conditions acting both as a protease and a chaperone. The optimal temperatures for the protein activity may reflect the evolutionary adaptation of S. maltophilia to life in soil or aqueous environments, where the temperatures are usually much below 37°C.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have