Abstract

BackgroundOleaginous yeasts are considered as a potential lipid source for food, feed and biofuel production. In order to make the yeast-based lipid production environmentally and economically sustainable, there is a need for screening studies in order to find the best yeast lipid producers on different substrates, and to optimize cultivation conditions. Since the target parameter of such screening studies are lipid amounts and profiles, an analytical technique that is able to perform lipid analyses rapidly, reproducible and with high precision is highly desirable. The main objective of this study was to establish the non-invasive high-throughput Fourier transform infrared (FTIR) spectroscopy analysis for the prediction of lipid content and profile in oleaginous yeasts.ResultsHigh-throughput FTIR spectroscopy allowed characterizing the total biochemical profile of oleaginous yeasts and enabled us to identify strains and substrate(s) providing the highest total lipid content. Some of the yeast strains grown under nitrogen-limiting conditions with glucose/xylose/mixture of glucose and xylose as carbon sources were accumulating lipids with a high proportion of free fatty acids. FTIR spectra were used to predict gravimetric and gas chromatography data by establishing multivariate calibration models. Coefficients of determination (R2) for calibration models were obtained in a range between 0.62 and 0.92 for predicting lipid content. When using an independent test set, R2 values between 0.53 and 0.79 were achieved for predicting fatty acid profile. The best spectral region(s) for the prediction of total lipid content was 3100–2800 cm−1 combined with 1800–700 cm−1, and for prediction of summed saturated (SAT), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids: 3100–2800 cm−1, 3100–2800 cm−1 combined with 1700–1715 cm−1 and 3100–2800 cm−1 combined with 1800–1715 cm−1, respectively. The highest lipid accumulation was observed for strains Rhodotorula babjevae DBVPG 8058 on glucose and mixture of glucose and xylose and Lipomyces starkeyi CBS 2512 on xylose.ConclusionsApplying FTIR spectroscopy combined with multivariate data analysis allows performing rapid, non-invasive, reproducible and precise quantitative predictions of total lipid content and lipid profile. It allows also detecting different lipid fractions as triacylglycerols (TAGs) and free fatty acids and evaluating the total biochemical profile of cells. Several yeast strains with high lipid accumulation were identified.

Highlights

  • Oleaginous yeasts are considered as a potential lipid source for food, feed and biofuel production

  • Total biochemical profile of oleaginous yeasts by Fourier transform infrared (FTIR) spectroscopy Thirteen biodiesel relevant oleaginous yeast strains were cultivated under different conditions, i.e. 3 days of cultivation on lipid-rich pre-culture medium (P) and 120 h of cultivation on nitrogen-limited media with three different C-sources (G, X, and M)

  • The total biochemical FTIR profiles of yeasts grown in pre-culture medium (P), glucose (G), xylose (X) and mixture of glucose and xylose (1:1) (M) are represented by the sets of characteristic peaks for lipids in the spectral regions 3020–2800 cm−1, 1800–1700 cm−1, 1500– 1300 cm−1, 1100–1200 cm−1 and 800–700 cm−1, for proteins in the spectral region 1700–1500 cm−1, carbohydrates in the spectral region 1200–800 cm−1 and polyphosphates, phospholipids and nucleid acids in the spectral region 1300–1200 cm−1 (Fig. 1, Table 2) [20]

Read more

Summary

Introduction

Oleaginous yeasts are considered as a potential lipid source for food, feed and biofuel production. The identification and development of oleaginous yeast strains that rapidly accumulate lipids [9, 10], selection of suitable cheap substrates, as well as optimization of the cultivation parameters represent some of the main challenges in developing “Yeast Lipids-to-Food, Feed and Biodiesel” processes. Performing extensive high-throughput screening procedures involving high numbers of yeast lipid producers grown on many different cheap substrates under different cultivation conditions as well as following the kinetics of lipid accumulation requires a method of lipid determination that is rapid, reproducible, and has a high precision for several hundreds of samples in a short period of time. It is well known that for the biodiesel production, lipids rich in monounsaturated fatty acids (MUFAs) are preferred, while in cases of animal feed and human food use, lipids rich in polyunsaturated fatty acids (PUFAs) are more valuable [2, 5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call