Abstract

BackgroundPrognostication plays a pivotal role in critical care medicine. Its importance is indisputable in the management of coronavirus disease 2019 (COVID-19), as the presentation of this disease may vary from docile, self-limiting symptoms to lethal conditions. Amid the COVID-19 pandemic, much emphasis was initially placed on molecular and serological testing. However, it was realized later that routine laboratory tests also provide key information in terms of the severity of the disease and thus could be used to predict the outcome of these patients.MethodologyThe aim of our study was to evaluate the biochemical parameters as prognostic markers in severely ill COVID-19 patients. We carried out a retrospective, case-control study. The study population was comprised of all severely ill COVID-19 patients admitted between October 2020 and January 2021 at our level 3 COVID hospital. Cases were defined as the patients who expired despite treatment and all resuscitative measures as per the standard operating procedures (SOPs) of our COVID intensive care unit (ICU) while controls were defined as the patients that were transferred out of the COVID ICU for further recovery. The detailed history, findings of physical examination, vitals recorded by point of care testing (POCT) devices at our ICU, clinical diagnosis, and the results of the biochemical analysis were recorded in a specially designed pro forma. The biochemical parameters recorded at the time of admission were compared between the groups of controls and cases in order to evaluate their role as predictors of mortality using appropriate statistical methods. P-values less than 0.05 were considered statistically significant. For all the parameters that showed a statistically significant difference, receiver operating characteristics (ROC) analysis was done to assess the utility of biochemical parameters as predictors of mortality or survival. Areas under the curve (AUCs) of 0.6 to 0.7, 0.7 to 0.8, 0.8 to 0.9, and >0.9 were considered acceptable, fair, good, and excellent for discrimination, respectively.ResultsOf the 178 severely ill COVID-19 patients enrolled in the study, 86 were controls and 92 were cases (52% mortality). Serum urea (p<0.0001), creatinine (p=0.0019), aspartate transaminase (AST) (p=0.0104), lactate dehydrogenase (LDH) (p=0.0001), procalcitonin (PCT) (p=0.0344), and interleukin 6 (IL-6) (p=0.0311) levels were significantly higher (p<0.05), while total protein (p=0.0086), albumin (p<0.0001), and indirect bilirubin (p=0.0147) levels were significantly lower (p<0.05) in cases as compared to controls. The difference was statistically insignificant (p>0.05) for serum sodium, potassium, total and direct bilirubin, globulin, alanine transaminase (ALT), alkaline phosphatase (ALP), D-dimer, and ferritin. On ROC analysis, urea was fair (AUC=0.721), creatinine (AUC=0.698) and IL-6 (AUC=0.698) were acceptable predictors of mortality, while albumin (AUC=0.698) was an acceptable predictor of survival in severely ill COVID-19 patients during their intensive care stay.ConclusionUnderstanding the pathophysiological changes associated with the severity of COVID-19 in terms of an alteration of biochemical parameters is a pressing priority. Our study highlights the importance of routine laboratory tests in predicting outcomes in severely ill COVID-19 patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call