Abstract
Eight wild populations of the High Sierra golden trout, Salmo aguabonita, and one domestic stock of rainbow trout, Salmo gairdneri, were examined for biochemical-genetic variation in eight protein systems. Variation within the eight systems was determined by at least 10 loci in both golden and rainbow trout and all the alleles identified in rainbow trout were observed as electro-phoretically identical phenotypes in golden trout. Variation was observed at an average of 51 percent of the loci in the golden trout samples and for five of the 10 loci in the rainbow trout. Average heterozygosity ranged from 12.6 to 13.9 percent for seven of the golden trout populations with one showing a low value of 5.4 percent. A comparable estimate of 12.1 percent was found for the rainbow stock. On the basis of genetic variation and allele frequencies at three loci, the eight golden trout populations were divided into two distinct groups. Three populations sampled from the Little Kern River basin tended to be genetically distinct from two additional Little Kern River basin populations and from three geographically distinct populations sampled from the eastern Kern River area. The former three populations were hypothesized to be of a recent rainbow-golden hybrid origin. Trout in the other two Little Kern River basin populations, sampled in head-waters of a stream tributary to the Little Kern River, were considered to be the threatened Little Kern golden trout, S. a. whitei Evermann, due to their high degree of genetic similarity to the geographically distinct subspecies S. a. aguabonita sampled from the eastern Kern River area. The finding of substantial genetic variation in the wild golden trout populations indicates that this threatened species is not at present genetically impoverished and thus does not appear to be in immediate danger of extinction through lack of adaptive capability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have