Abstract

Bio‒production of alginate oligosaccharides (AOSs), a type of functional food additive, is a promising way for green utilization of algae, in which alginate hydrolyzing enzymes play a key role. A novel alginate lyase gene (MiAly17A) from a marine bacterium Microbulbifer arenaceous was heterologously expressed in E. coli. The coding sequence of the gene shared the highest identity of 86% with a polysaccharide lyase (PL) family 17 alginate lyase (AlgL17) from Microbulbifer sp. ALW1. The recombinant enzyme (MiAly17A) was purified and biochemically characterized. MiAly17A showed maximal enzyme activity at 40 °C and pH 7.5, respectively. It was stable at the temperatures below 35 °C and within pH 5.0–8.0. The enzyme activities were increased by 5.3 and 5.6 folds in the presence of 100 mM of K+ and Na+, respectively. MiAly17A was bifunctional and could hydrolyze sodium alginate to release unsaturated monosaccharides and oligosaccharides with degrees of polymerization (DP) 2–7. The enzyme catalyzed the cleavage of glycosidic bonds from the non-reducing ends and the backbone of the tested oligosaccharides (DP ≥ 4), exhibiting both exolytic and endo-lytic activities. Moreover, MiAly17A was used for the production of alginate oligosaccharides from sodium alginate, and the highest conversion ratio of 68% was obtained. The unique properties may possess the enzyme great potential for preparation of alginate oligosaccharides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call