Abstract

In this study, we studied the biochemical characterization of flavone synthase I from Daucus carota (DcFNS I) and applied it with flavonoid 6-hydroxylase from Scutellaria baicalensis (SbCYP) to convert flavanones to flavones. The recombinant DcFNS I was expressed in the form of the glutathione-S-transferase fusion protein. Rather than taxifolin, naringenin, pinocembrin, and eriodictyol were accepted as substrates. The optimal temperature and pH for reaction in vitro were 35 °C and 7.5, respectively, and 2-oxoglutarate was essential in the assay system. Co2+, Cu2+, Mn2+, Ni2+, and Zn2+ were not substitutes for Fe2+. EDTA and pyruvic acid inhibited the activity, except for Fe3+. Kinetic analysis revealed that the Vmax and kcat values of the recombinant DcFNS I against naringenin were 0.183 nmol mg−1 s−1 and 0.0121 s−1, and 0.175 nmol mg−1 s−1 and 0.0116 s−1 against pinocembrin. However, the recombinant DcFNS I had a higher affinity for naringenin than pinocembrin, with kM values for each of 0.076 mM and 0.174 mM respectively. Thus, it catalyzed naringenin more efficiently than pinocembrin. Subsequently, using an Escherichia coli and Saccharomyces cerevisiae co-culture system, we successfully converted naringenin and pinocembrin to scutellarein and baicalein respectively. In a synthetic complete medium, the titers of scutellarein and baicalein reached 5.63 mg/L and 0.78 mg/L from 200 mg/L precursors.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12010-022-04176-0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.