Abstract

Coastal sediments are considered to be final receptacles for organic and inorganic contaminants. Characterizing those sediments and assessing their biodegradation potential have become a great challenge in recent years. In this study, the chemical composition, including the content in polycyclic aromatic hydrocarbons, the microbial community abundance and diversity (using culture-independent approaches targeting 16S rRNA genes), and the aerobic/anaerobic biodegradation potential of coastal sediments collected in the Sfax coastal area (Gulf of Gabès, Southern Mediterranean Sea) were investigated. The highest concentration of total polycyclic aromatic hydrocarbons (981 µg kg−1 dw) was recorded in Sidi Mansour harbor sediment, emphasized pyrogenic and petrogenic hydrocarbon sources. Organic matter, including total organic carbon, and the ultimate aerobic biodegradability, with 30% as the highest value in Sidi Salem channel sediment, were in a positive accordance with bacterial communities assigned within Actinobacteria, Clostridia and Flavobacteria classes. The correlation noticed between Thermocladium and Thermogladius genera and sulfate content explained that Sidi Mansour and PK4 sediments are located in terrestrial acid–sulfate areas. The highest cumulative methane produced with Marseille inoculum and Tunisian inoculum was recorded in Sidi Salem sediment and strongly correlated with methanogens among Methanobacteria, Methanococci and Methanomicobia classes showing the presence of industrial and municipal sources. The bioavailability of low and moderate polycyclic aromatic hydrocarbons in the current study may explain the occurrence of Methanobacterium which positively correlated with the anaerobic biodegradability using Tunisian inoculum with 50% as the highest value in Sidi Mansour sediment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call