Abstract

The synthesis mechanisms and function evaluation of selenium(Se)-enriched microorganism remain relatively unexplored. This study unveils that total Se content within A. oryzae A02 mycelium soared to an impressive 8462 mg/kg DCW, surpassing Se-enriched yeast by 2–3 times. Selenium exists in two predominant forms within A. oryzae A02: selenoproteins (SeMet 32.1 %, SeCys 14.4 %) and selenium nanoparticles (SeNPs; 53.5 %). The extensive quantitative characterization of the elemental composition, surface morphology, and size of SeNPs on A. oryzae A02 mycelium significantly differs from those reported for other microorganisms. Comparative RNA-Seq analysis revealed the upregulation of functional genes implicated in selenium transformation, activating multiple potential pathways for selenium reduction. The assimilatory and dissimilatory reductions of Se oxyanions engaged numerous parallel and interconnected pathways, manifesting a harmonious equilibrium in overall Se biotransformation in A. oryzae A02. Furthermore, selenium-enriched A. oryzae A02 was observed to primarily upregulate peroxisome activity while downregulating estrogen 2-hydroxylase activity in mice hepatocytes, suggesting its potential in fortifying antioxidant physiological functions and upholding metabolic balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.