Abstract

Wilms' tumour suppressor gene, WT1, is mutated/deleted in approximately 15% of Wilms' tumours, highly expressed in the majority of other cancers and is essential for normal embryonic development. The gene encodes multiple isoforms of a zinc-finger (ZF) protein with diverse cellular functions, in particular participating in both transcriptional and post-transcriptional gene regulation. Physical interactions of other cellular proteins with WT1 are known to modulate its function. However, despite the isolation of several WT1-binding proteins, the mechanisms involved in regulating WT1 activities are not clearly understood. In this study, we report the identification of the Krüppel-like ZF protein, ZNF224, as a novel human WT1-associating protein and demonstrate that ZNF224 and its isoform ZNF255 show a specific pattern of interaction with the WT1 splicing variants WT1(-KTS) and WT1(+KTS). These interactions occur in different subcellular compartments and are devoted to control different cellular pathways. The nuclear interaction between ZNF224 and WT1(-KTS) results in an increase in trascriptional activation mediated by WT1, implying that ZNF224 acts as a co-regulator of WT1, whereas, on the contrary, the results obtained for ZNF255 suggest a role for this protein in RNA processing together with WT1. Moreover, our data give the first functional information about the involvement of ZNF255 in a specific molecular pathway, RNA maturation and processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call