Abstract

Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder and the leading genetic cause of autism spectrum disorders. FXS is caused by loss of function mutations in Fragile X mental retardation protein (FMRP), an RNA binding protein that is known to regulate translation of its target mRNAs, predominantly in the brain and gonads. The molecular mechanisms connecting FMRP function to neurodevelopmental phenotypes are well understood. However, neither the full extent of reproductive phenotypes, nor the underlying molecular mechanisms have been as yet determined. Here, we developed new fmr1 knockout zebrafish lines and show that they mimic key aspects of FXS neuronal phenotypes across both larval and adult stages. Results from the fmr1 knockout females also showed that altered gene expression in the brain, via the neuroendocrine pathway contribute to distinct abnormal phenotypes during ovarian development and oocyte maturation. We identified at least three mechanisms underpinning these defects, including altered neuroendocrine signaling in sexually mature females resulting in accelerated ovarian development, altered expression of germ cell and meiosis promoting genes at various stages during oocyte maturation, and finally a strong mitochondrial impairment in late stage oocytes from knockout females. Our findings have implications beyond FXS in the study of reproductive function and female infertility. Dissection of the translation control pathways during ovarian development using models like the knockout lines reported here may reveal novel approaches and targets for fertility treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.