Abstract
Betaine aldehyde dehydrogenase 2 (BADH2) is believed to be involved in the accumulation of 2-acetyl-1-pyrroline (2AP), one of the major aromatic compounds in fragrant rice. The enzyme can oxidize ω-aminoaldehydes to the corresponding ω-amino acids. This study was carried out to investigate the function of wild-type BADHs and four BADH2 mutants: BADH2_Y420, containing a Y420 insertion similar to BADH2.8 in Myanmar fragrance rice, BADH2_C294A, BADH2_E260A and BADH2_N162A, consisting of a single catalytic-residue mutation. Our results showed that the BADH2_Y420 mutant exhibited less catalytic efficiency towards γ-aminobutyraldehyde but greater efficiency towards betaine aldehyde than wild-type. We hypothesized that this point mutation may account for the accumulation of γ-aminobutyraldehyde/Δ(1)-pyrroline prior to conversion to 2AP, generating fragrance in Myanmar rice. In addition, the three catalytic-residue mutants confirmed that residues C294, E260 and N162 were involved in the catalytic activity of BADH2 similar to those of other BADHs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.