Abstract

Using biochar to adsorb and degrade organic contaminants has attracted increasing attention due to its relatively low cost and high efficiency. In this work, two magnetic biochars were synthesized by pyrolyzing a mixture of naturally occurring hematite or goethite mineral and pine needle biomass. The biochar composite was characterized with X-ray diffraction, scanning electron microscopy, and surface area analyzer. The result demonstrated iron minerals have been deposited on carbon surfaces and been reduced to magnetite or wustite minerals. In comparison to the unmodified biochar, the iron mineral-modified biochar had better sorption ability, likely because the iron mineral particles on the carbon surface served as additional sorption sites for sulfamethoxazole (SMX) removal. After modification, the biochar also showed higher persulfate activation capacity with radical generation: at 4h, neutral pH, 67.5 and 77.9% of persulfate is activated with hematite and goethite modified biochar, where only 11.7% persulfate is activated by unmodified biochar. With persulfate, goethite-modified biochar showed better SMX removal capacity than hematite-modified biochar with about 79% of SMX removed in 4h. Solution chemistry such as pH and co-exist humic acid can affect SMX removal by affecting iron minerals. Because the magnetized biochar can be easily isolated and removed with external magnets, it can be used in various contaminant removal applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call