Abstract

Soil is a crucial contributor to greenhouse gas (GHG) emissions from terrestrial ecosystems to the atmosphere. The reduction of GHG emissions in plantation management is crucial to combating and mitigating global climate change. A 12-month field trial was conducted to explore the effects of different fertilization treatments (control, without fertilizer (CK); biochar-based fertilizer treatment (BFT); chemical fertilizer treatment (CFT); and mixture of 50% BFT and 50% CFT (MFT)) on the soil GHG emissions of a typical bamboo (Pleioblastus amarus (Keng) Keng f.) plantation. The results demonstrated that compared with the CK, BFT reduced the annual cumulative soil N2O emission by 16.3% (p < 0.01), while CFT and MFT significantly increased it by 31.0% and 23.3% (p < 0.01), respectively. Meanwhile, BFT and MFT increased the annual cumulative soil CH4 uptake by 5.8% (p < 0.01) and 7.5% (p < 0.01), respectively, while there was no statistically significant difference between CFT and the control. In addition, BFT, CFT, and MFT significantly increased the annual cumulative soil CO2 emission by 9.4% (p < 0.05), 13.0% (p < 0.01), and 26.5% (p < 0.01). The global warming potential (GWP) of BFT did not change significantly, while CFT and MFT increased the GWP by 13.7% (p < 0.05) and 28.6% (p < 0.05), respectively, compared with the control. Structural equation modeling revealed different treatments affected soil N2O and CH4 emission by changing soil labile carbon and labile nitrogen pools. This study suggests utilizing BFT new ideas and strategies for mitigating GHG emissions from soils in subtropical Pleioblastus amarus plantations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call