Abstract
Waste disposal, metal plating, refineries, and mining operations frequently contaminate soils with nickel (Ni). We explored the effects of artificial Ni contamination (0, 56, and 180mg Ni kg-1) on the soil biochemical indices. The lab experiment also investigated the possible use of kunai grass (Imperata cylindrica) biochar at a 0.75% dry weight basis to alleviate contamination effects. The biochemical indices such as dehydrogenase enzyme activity, acid phosphatase enzyme activity, and soil respiration rates were monitored in three replications. High level of Ni (180mg kg-1) suppressed soil respiration rate by 37% and dehydrogenase activity by 62% up to 15 days. The acid phosphatase activity was not affected by Ni levels and was insensitive to Ni contamination. Biochar application to the Ni contaminated soil did not improve the soil's key biological properties. The beneficial effects of biochar could be limited to improvements in soil chemical properties and not on index biological properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of Environmental Contamination and Toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.