Abstract

Additions of fire residues in the form of charcoal and wood ash may better emulate natural disturbance processes in managed boreal forests. We examined the effects of a poplar (Populus) wood biochar and a high-carbon wood ash on soil and vegetation in a 3-year experiment in northwestern Ontario, Canada. Both soil amendments increased soil pH and soil Ca levels; high-carbon wood ash also increased soil Cu, Zn, B, S, and Pb. Amendments had large effects on plant community composition, favoring a subset of ruderal species including raspberry (Rubus idaeus L.) and goldenrod (Solidago canadensis L.). The addition of high-carbon wood ash resulted in declines in growth of planted white spruce (Picea glauca (Moench) Voss); a path analysis suggests that this was due to the effects of toxic elements rather than the indirect effects of competition. We conclude that high-carbon wood ash, while qualifying as a type of biochar and having some beneficial effects on soil properties, can enhance toxic metals in boreal forest soils, with negative consequences to early tree growth. Differences in plant species responses to biochars and the potential for toxicity effects and indirect effects mediated by plant competition will require screening and field trials of potential biochars prior to their use in operational forestry and forest restoration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.