Abstract

SummaryAs a consequence of heterogeneous transport in soils, only a small part of the soil might be responsible for sorbing incoming elements. After staining preferential flow paths in forested Dystric Cambisol with a colour dye, we sampled soil material from the flow paths and from the soil matrix. We measured chemical properties and sorption isotherms of these two flow regions and estimated the significance of preferential flow paths for the transport of solutes leached from wood ash applied at the surface. In the A horizon (0–9 cm depth), the cation exchange capacity of the flow paths was 83.8 mmolc kg−1, while that of the soil matrix was only 74.6 mmolc kg−1. The base saturation was 42% and soil organic matter content was 41% larger in flow paths than in the soil matrix. The sorption capacity for Cu was also larger than in the matrix, whereas the sorption capacity for Sr was similar in both flow regions. The impact of the addition of 8 t wood ash ha−1 on soil chemical properties was restricted mainly to the flow paths in the uppermost 20 cm of the soil; it was negligible in the matrix and at greater depths. Concentrations of exchangeable Ca in the flow paths increased nearly 10‐fold during the 6 months following the addition of the wood ash, and those of organically bound Pb by 50%. The opposite effect was found for exchangeable Al. Our results show that only part of the whole soil volume, approximately 50% of 0–20 cm in our study, is involved in transporting and sorbing the elements applied with the wood ash or as tracers. Such differences must be considered when calculating the maximal impact of any addition of fertilizer, wood ash, or liming agent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.