Abstract

Soil chromium (Cr) pollution has received substantial attention owing to related food chain health risks and possible promotion of greenhouse gas (GHG) emissions. The aim of the present study was to develop a promising remediation technology to alleviate Cr bioavailability and decrease GHG emissions in Cr-polluted paddy soil. We investigated the potential role of biochar amendment in decreasing soil CO2, CH4, and N2O emissions, as well in reducing Cr uptake by rice grains at application rates of 0 t ha−1 (CK), 20 t ha−1 (BC20), and 40 t ha−1 (BC40) in Cr-polluted paddy soil in southeastern China. In addition, the soil aggregate size distribution, soil organic carbon (SOC) concentration of soil aggregates, soil available Cr concentration, and rice yield were analyzed after harvesting. Biochar amendment significantly reduced CO2, CH4, and N2O emission fluxes. Compared to CK, total C emissions in the BC20 and BC40 treatments decreased by 9.94% and 17.13% for CO2-C, by 30.46% and 37.10% for CH4-C, and by 34.24% and 37.49% for N2O-N, respectively. Biochar amendment increased the proportion of both the 2000–200 μm and 200–20 μm size fractions in the soil aggregate distribution. Accordingly, the organic carbon concentration of these fractions increased, which increased the total SOC. Moreover, biochar amendment significantly decreased soil available Cr concentration and total Cr content of the rice grains by 33.6% and 14.81% in BC20 and 48.1% and 33.33% in BC40, respectively. Rice yield did not differ significantly between biochar amendment treatment and that of CK. Biochar application reduced GHG emissions in paddy soil, which was attributed to its comprehensive effect on the soil properties, soil microbial community, and soil aggregates, as well as on the mobility of Cr. Overall, the present study demonstrates that biochar has a great potential to enhance soil carbon sequestration while reducing Cr accumulation in rice grains from Cr-polluted rice paddies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.