Abstract
Biocatalytic transesterification of methylmethacrylate is possible in many different solvents. The reaction rate is readily controlled by variation in solvent physical properties. The reaction proceeds better in hydrophobic solvents, and activity can be restored in hydrophilic solvents by the addition of water. We have now demonstrated that supercritical carbon dioxide is not a good solvent for the reaction between 2-ethlhexanol and methylmethacrylate. It appearance that the supercritical carbon dioxide may either alter the pH of the microaqueous environment associated with the protein or reversibly form covalent complexes with free amine groups on the surface of the enzyme. Although supercritical carbon dioxide is a poor solvent for acrylate transesterification, many other supercritical fluids (ethane, ethylene, sulfur hexafluoride, and fluoroform) are better than most conventional solvents. In supercritical ethane it is possible to control the activity of the enzyme by changing pressure, and the enzyme appears to follow Michaelis-Menten Kinetics. We find that sulfur hexafluoride, the first anhydrous inorganic solvent in which biocatalytic activity has been reported, is a better solvent than any conventional or supercritical organic fluid tested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.