Abstract
We have previously demonstrated that the activity of the lipase (Candida cylindracea) catalyzed transesterification reaction between methylmethacrylate and 2-ethylhexanol in supercritical carbon dioxide is comparatively low. In this article, we have investigated the same reaction in supercritical carbon dioxide with a special emphasis on determining the extent of any interaction between the enzyme and carbon dioxide. Transesterification reaction rates in hexane and supercritical carbon dioxide are compared at different temperatures. In supercritical carbon dioxide, temperature was found to have no significant effect on reaction rate in the range of 40 degrees to 55 degrees C. Above 55 degrees C, however, the reaction rate increased significantly as a function of temperature. It appears that carbon dioxide forms reversible complexes with the free amine groups on the surface of the enzyme. Direct evidence of modification was obtained using mass spectroscopy to detect the extent of modification of a pure protein. The kinetics of the reaction have been studied in hexane, and they obey a ping-pong bi-bi mechanism with inhibition by 2-ethylhexanol. The effect of bubbling carbon dioxide and/or fluoroform on the reaction rate in hexane at different temperatures suggests that the enzyme undergoes shear inactivation in hexane. (c) 1995 John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.