Abstract

AbstractEnzymes are attractive catalysts because of their promiscuity and their ability to perform highly regio‐, chemo‐ and stereoselective transformations. Enzyme promiscuity allows optimisation of industrial processes that require reaction conditions different from those in nature. Many enzymes can be used in reactions completely different from the reaction the enzyme originally evolved to perform. Such catalytically promiscuous reactions can be secondary activities hidden behind a native activity and might be discovered either in screening for that particular activity or, alternatively, by chance. Recently, researchers have designed enzymes to show catalytic promiscuity. It is also possible to design new enzymes from scratch by computer modelling (de novo design), but most work published to date starts from a known enzyme backbone. Promiscuous activity might also be induced or enhanced by rational design or directed evolution (or combinations thereof). Enzyme catalytic promiscuity provides fundamental knowledge about enzyme/substrate interactions and the evolution of new enzymes. New enzymes are required by industry, which needs to optimise chemical processes in an environmentally sustainable way. In this review various aspects of enzyme catalytic promiscuity are considered from a biocatalytic perspective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.