Abstract

This paper presents a bio-based process for the catalytic conversion of cellulose to ethyl levulinate and an analysis of its techno-economic feasibility. The said bio-based process relies as major feedstock on cellulose, which can be derived from lignocellulosic biomass. cellulose is converted to ethyl levulinate via a homogeneous catalytic reaction whereby dilute sulfuric acid in combination with Al salts is the catalyst and ethanol is the solvent and reactant. This approach affords high ethyl levulinate yields but requires complex procedures for used catalyst and solvent recycling. Based on experimental results on the homogeneous catalytic reaction and vapor–liquid equilibrium separation in the previous studies, a simulation was conducted that included process design, energy integration, and economic analysis. Results from this simulation indicated the proposed bio-based process to afford a minimum selling price of US$ 2,830 per ton of ethyl levulinate, which was highly dependent on an off-site supply of heating energy required for ethanol purification.11The short version of the paper was presented at ICAE2020, Dec 1–10, 2020. This paper is a substantial extension of the short version of the conference paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call