Abstract
Predictive solar-desalination models are becoming more widespread using ML and AI. However, forecasting solar still water productivity based on numerous designs still needs to be improved. Herein, we used transfer learning to create precise supervised predictive ANN regression models for water productivity (L/m2.day) predictions based on literature findings. Such observation datasets from single-basin solar stills were utilized to build the random initialization ANN model. The transfer learning method was applied to the latter model by taking the learned network (weights) for fine-tuning the hyperparameters from the earlier developed novel hybrid solar still known as the source (pre-trained) ANN model, to predict the target ANN model. Based on most minor statistical errors, the pre-trained model with 5–64–64-1 architecture and ReLU activation function was the most appropriate for water productivity prediction. All created ANN models were compared to the MLR model. The results revealed that the generated target ANN model outperformed the ANN RI and MLR with OI values of 0.872, 0.834, and 0.803, respectively, in all modeling stages. The target ANN model's accuracy and generalization were sufficient. The target ANN model had residuals of forecasted distillate values of around 1%. This work discusses the significance of transfer learning to generate accurate target ANN models for predicting freshwater outputs in single-slope solar stills, which can be integrated with established theoretically tuned parameters to enhance performance and maximize distillate water yields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.