Abstract

We investigate the "macronutrient-access hypothesis", which states that the balance between stoichiometric macronutrient demand and accessible macronutrients controls nutrient assimilation by aquatic heterotrophs. Within this hypothesis, we consider bioavailable dissolved organic carbon (bDOC), reactive nitrogen (N) and reactive phosphorus (P) to be the macronutrients accessible to heterotrophic assimilation. Here, reactive N and P are the sums of dissolved inorganic N (nitrate-N, nitrite-N, ammonium-N), soluble-reactive P (SRP), and bioavailable dissolved organic N (bDON) and P (bDOP). Previous data from various freshwaters suggests this hypothesis, yet clear experimental support is missing. We assessed this hypothesis in a proof-of-concept experiment for waters from four small agricultural streams. We used seven different bDOC:reactive N and bDOC:reactive P ratios, induced by seven levels of alder leaf leachate addition. With these treatments and a stream-water specific bacterial inoculum, we conducted a 3-day experiment with three independent replicates per combination of stream water, treatment, and sampling occasion. Here, we extracted dissolved organic matter (DOM) fluorophores by measuring excitation-emission matrices with subsequent parallel factor decomposition (EEM-PARAFAC). We assessed the true bioavailability of DOC, DON, and the DOM fluorophores as the concentration difference between the beginning and end of each experiment. Subsequently, we calculated the bDOC and bDON concentrations based on the bioavailable EEM-PARAFAC fluorophores, and compared the calculated bDOC and bDON concentrations to their true bioavailability. Due to very low DOP concentrations, the DOP determination uncertainty was high, and we assumed DOP to be a negligible part of the reactive P. For bDOC and bDON, the true bioavailability measurements agreed with the same fractions calculated indirectly from bioavailable EEM-PARAFAC fluorophores (bDOC r2 = 0.96, p < 0.001; bDON r2 = 0.77, p < 0.001). Hence we could predict bDOC and bDON concentrations based on the EEM-PARAFAC fluorophores. The ratios of bDOC:reactive N (sum of bDON and DIN) and bDOC:reactive P (equal to SRP) exerted a strong, predictable stoichiometric control on reactive N and P uptake (R2 = 0.80 and 0.83). To define zones of C:N:P (co-)limitation of heterotrophic assimilation, we used a novel ternary-plot approach combining our data with literature data on C:N:P ranges of bacterial biomass. Here, we found a zone of maximum reactive N uptake (C:N:P approx. > 114: < 9:1), reactive P uptake (C:N:P approx. > 170:21: < 1) and reactive N and P co-limitation of nutrient uptake (C:N:P approx. > 204:14:1). The “macronutrient-access hypothesis” links ecological stoichiometry and biogeochemistry, and may be of importance for nutrient uptake in many freshwater ecosystems. However, this experiment is only a starting point and this hypothesis needs to be corroborated by further experiments for more sites, by in-situ studies, and with different DOC sources.

Highlights

  • The growing intensity of arable land use and farming as well as population growth and urbanization expose aquatic ecosystems to chronic overloading of phosphorus (P) and nitrogen (N) with a plethora of deleterious effects (Kronvang et al 2005; Conley et al 2009; Canfield et al 2010; Weigelhofer et al 2013; Weigelhofer 2017)

  • To link DOC composition and the amount of bioavailable bioavailable dissolved organic carbon (bDOC) or bioavailable bioavailable dissolved organic N (bDON), we investigated the correlation between the uptake of DOC or dissolved organic N (DON) and the uptake of the PARAFAC components

  • When using bDOC and reactive N—the sum of DIN and bDON—we found a shift in the range of x-axis (Fig. 5a)

Read more

Summary

Introduction

The growing intensity of arable land use and farming as well as population growth and urbanization expose aquatic ecosystems to chronic overloading of phosphorus (P) and nitrogen (N) with a plethora of deleterious effects (Kronvang et al 2005; Conley et al 2009; Canfield et al 2010; Weigelhofer et al 2013; Weigelhofer 2017). The concentrations of Biogeochemistry (2021) 155:1–20 reactive N and P, mainly in the forms of nitrate and soluble reactive phosphorus (SRP), increase globally in streams and rivers This nutrient overloading could be linked to low ratios of DOC to N or P, which are far from the ‘‘optimum’’ demand of heterotrophic microbial organisms, limiting N and P processing due to insufficient DOC availability (Stutter et al 2018). Even a bacterial community completely consisting of homeostatic strains may adapt to the composition of the food source, as strains with macronutrient ratios close to the one of the food source may increasingly dominate the bacterial community (Danger et al 2008) Both heterostatic strains and community adaptation may result in a wide range of C:N:P ratios in which nutrient uptake is potentially co-limited by DOC, N, and P. Or above specific food C:N:P ratios, bacterial communities should not be able to adapt anymore, resulting in clear C or nutrient limitation of the bacterial heterotrophic assimilation

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call