Abstract

BackgroundThe global shift toward greener societies demands new technologies and work operations in the waste-management sector. However, progressive industrial methods do not necessarily consider workers’ health. This study characterized workers' exposure to bioaerosols and investigated the bioaerosols’ potential to engage the immune system in vitro. MethodsFull shift personal aerosol sampling was conducted over three consecutive days. Dust load was analyzed by gravimetry, fungal and actinobacterial spores were analyzed by scanning electron microscopy, and endotoxin by limulus amebocyte lysate (LAL) assay. In vitro exposure of HEK cells to airborne dust samples was used to investigate the potential of inducing an inflammatory reaction. ResultsThe total dust exposure level exceeded the recommended occupational exposure limit (OEL) of 5.0 mg/m3 in 3 out of 15 samples. The inhalable endotoxin level exceeded the recommended exposure level by a 7-fold, whereas the fungal spore level exceeded the recommended exposure level by an 11-fold. Actinobacterial spores were identified in 8 out of 14 samples. In vitro experiments revealed significant TLR2 activation in 9 out of 14 samples vs. significant TLR4 activation in all samples. ConclusionThe present study showed that the dust samples contained potentially health-impairing endotoxin, fungi, and actinobacterial levels. Furthermore, the sampled dust contained microbial components capable of inducing TLR activation and thus have the potential to evoke an inflammatory response in exposed individuals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call