Abstract

The bioadsorption of Pb(II), Cd(II), and Cr(VI) using bacteria and activated carbon has been studied. Preliminary studies yielded the chemical and textural characterization of the carbons. The adsorption of bacteria on the activated carbons modified their surface characteristics, reducing the volume of pores and the pH of the point of zero charge, with a resulting increase in the density of the negative charge of their surface. The adsorption of the above metals was studied in both static and dynamic conditions and in the absence and presence of bacteria ( Escherichia coli). The presence of bacteria in aqueous solution enhances the adsorption of Pb(II) and Cd(II) and reduces the adsorption of Cr(VI). These results can be explained by changes in the surface charge density of the carbons when bacteria are adsorbed, and by considering the structural and chemical characteristics of the bacterial cell walls. Investigation of the effect of electrolytes on the bioadsorption of these metals showed, in general, a resulting reduction in the amount of metal adsorbed, mainly in the presence of divalent cations. According to the divalent cation bridging theory, these results derive from competition between the Pb(II) or Cd(II) cations and the electrolyte cations for the negatively charged functional groups of extracellular polymeric substances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call