Abstract

The discharge of effluent polluted with heavy metals have become a growing concern for researchers around the world. This study evaluated the removal efficiency of commercial activated carbon and rice husk activated carbon as adsorbents for the removal of copper ion in water. A nominal size of 1 mm was obtained after sieving the Rice Husk, washed with distilled water, dried in an oven t at 80 ℃ for 12 hours, and pyrolyzed in a furnace at 550 ℃ for 30 minutes. The chars produced were later air-dried and then activated with lemon juice. The Rice Husk Activated Carbon (RHAC) and Commercial Activated Carbon (CAC) purchased from the market were both subjected to the following analyses: bulk density, X-ray Fluorescence (XRF), Brunauer–Emmett–Teller (BET), Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX) in order to characterise the adsorbents and to understand their suitability for the removal of copper ion in water. One of the properties of an adsorbent is large pores which is exhibited by the activated carbons as revealed by the SEM analysis. Likewise, the XRF and EDX analyses confirmed that the adsorbents had larger proportion of Silica (50.1 – 50.25%), Carbon (60.06 – 84.87 wt .%) and Oxygen (15.13 – 21.60 wt. %) which is a property of a good adsorbent. BET analysis showed that the surface areas of the rice husk activated carbon and the commercial activated carbon were 998.35 and 1208.25 m2/g, respectively. The bulk densities of the rice husk activated carbon and the commercial activated carbon were 0.3325 and 0.2812 g/cm3, respectively. The maximum removal efficiency using RHAC was observed at 60 ℃ and 120 minutes at 83.96 and 89.21 %, respectively while for CAC the maximum removal efficiency was observed at 60 ℃ at 84.61 % and 30 minutes at 83.3 %. Initial concentration of 20 mg/l was observed to have the highest removal efficiency for the two activated carbon specimens. The modelled effect of initial concentration, temperature and contact time on removal efficiency yielded R2 values of 1, 0.918; 1,1 and 1,1 respectively for the CAC and RHAC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call