Abstract

To evaluate the abilities of three calcium silicate-based pulp-capping materials (ProRoot MTA, TheraCal LC and a prototype tricalcium silicate cement) to produce apatite-like precipitates after being subcutaneously implanted into rats. Polytetrafluoroethylene tubes containing each material were subcutaneously implanted into the backs of Wistar rats. At 7, 14 and 28days post-implantation, the implants were removed together with the surrounding connective tissue, and fixed in 2.5% glutaraldehyde in cacodylate buffer. The chemical compositions of the surface precipitates formed on the implants were analysed with scanning electron microscopy-electron probe microanalysis (SEM-EPMA). The distributions of calcium (Ca) and phosphorus (P) at the material-tissue interface were also analysed with SEM-EPMA. Comparisons of the thicknesses of the Ca- and P-rich areas were performed using the Friedman test followed by Scheffe's test at a significant level of 5%. All three materials produced apatite-like surface precipitates containing Ca and P. For each material, elemental mapping detected a region of connective tissue in which the concentrations of Ca and P were higher than those in the surrounding connective tissue. The thickness of this Ca- and P-rich region exhibited the following pattern: ProRoot MTA > prototype tricalcium silicate cement≥TheraCal LC. ProRoot MTA had a significantly thicker layer of Ca and P than the other materials at all time-points (P<0.05), and a significant difference was detected between the prototype cement and TheraCal LC at 28days (P<0.05). After being subcutaneously implanted, all of the materials produced Ca- and P-containing surface precipitates and a Ca- and P-rich layer within the surrounding tissue. The thickness of the Ca- and P-rich layer of ProRoot MTA was significantly thicker than that of the other materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.