Abstract

Collagen was chemically immobilized on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films via hydrophilic polyacrylamide spacers, aiming to establish the bioactive surface and the inner surface models. The inner surface modified films presented higher wettability than the surface modified films. Wide-angle x-ray diffraction results showed that the d-spacing values of the inner surface model increased compared with those of the surface model, but there was no significant difference between the amide- and collagen-modified PHBV films. The peak melting temperatures of PHBV and the special endotherm around 70 °C were following the order: PHBV > amide-modified PHBV > collagen-modified PHBV. The weight loss of the collagen-modified PHBV (inner surface model) might involve hydrolyzation and mineralization during 360 days of incubation, with a maximum value of 18.24%, while PHBV films did not show significant weight loss. The pH value of the degradation fluids fluctuated in the range of 6.86–7.22, as the initial pH was recorded at 7.20. Based on the surface model, collagen-modified PHBV scaffolds were prepared, which enhanced chondrocyte adhesion and spread on the biomimetic surface. Two surface modification models might develop a protocol with a view to generating a biocompatible and biomechanical scaffold for use in meniscus regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call