Abstract

Oral cancer accounts for 50%–70% of all cancer-related deaths in India and ranks sixth among the most frequent cancers globally. Roughly 90% of oral malignancies are histologically arise from squamous cells and are therefore called oral squamous cell carcinoma. Organic polycations known as biogenic polyamines, for example, putrescine (Put), spermidine (Spd), and spermine (Spm), are vital for cell proliferation, including gene expression control, regulation of endonuclease-mediated fragmentation of DNA, and DNA damage inhibition. Higher Spm and Spd levels have been identified as cancer biomarkers for detecting tumour development in various cancers. The current study utilises tannic acid, a polyphenolic compound, as a reducing and capping agent to fabricate AuNPs via a one-step microwave-assisted synthesis. The fabricated TA@AuNPs were utilised as a nanoprobe for colourimetric sensing of polyamines in PBS. When TA@AuNPs are added to the polyamine, the amine groups in polyamines interact with the phenolic groups of TA@AuNPs via hydrogen bonding or electrostatic interactions. These interactions cause the aggregation of TA@AuNPs, resulting in a red shift of the Surface Plasmon Resonance band of TA@AuNPs from 530 nm to 560 nm. The nanoprobe was found to be highly specific for Spm at low concentrations. TA@AuNPs were able to detect Spm successfully in artificial saliva samples. On recording the RGB values of the sensing process using a smartphone app, it was found that as the nanoparticles aggregated due to the presence of Spm, the intensity of the R-value decreased, indicating the aggregation of TA@AuNPs due to interaction with the polyamine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.