Abstract
The extremophilic microbes of the Berkeley Pit Lake are a valuable source of new and interesting secondary metabolites. It is of particular interest that these acidophilic microbes produce small molecule inhibitors of pathways associated with low pH and high Eh. These same small molecules also inhibit molecular pathways induced by reactive oxygen species (ROS) and inflammation in mammalian cells. Low pH is a hallmark of inflammation and high Eh is one of ROS, so the suitability of this collection as a source of bioactive metabolites is actually quite biorational. Compound isolation was guided by inhibition of caspase-1 and matrix metalloproteinase-3, and active compounds were sent to the National Cancer Institute-Developmental Therapeutics Program and Memorial Sloan Kettering Cancer center for evaluation as either antiproliferative or cytotoxic agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.