Abstract

The increase in the atmospheric concentrations of one of the vital green house gasses, carbon dioxide, due to anthropogenic interventions has led to several undesirable consequences such as global warming and related changes. In the global effort to combat the predicted disaster, several CO2 capture and storage technologies are being deliberated. One of the most promising biological carbon dioxide sequestration technologies is the enzyme catalyzed carbon dioxide sequestration into bicarbonates which was endeavored in this study with a purified C. freundii SW3 β-carbonic anhydrase (CA). An extensive screening process for biological sequestration using CA has been defined. Six bacteria with high CA activity were screened out of 102 colonies based on plate assay and presence of CA in these bacteria was further emphasized by activity staining and Western blot. The identity of selected bacteria was confirmed by 16S rDNA analysis. CA was purified to homogeneity from C. freundii SW3 by subsequent gel filtration and ion exchange chromatography which resulted in a 24 kDa polypeptide and this is in accordance with the Western blot results. The effect of host on metal ions, cations and anions which influence activity of the enzyme in sequestration studies suggests that mercury and HCO3 − ion almost completely inhibit the enzyme whereas sulfate ion and zinc enhances carbonic anhydrase activity. Calcium carbonate deposition was observed in calcium chloride solution saturated with carbon dioxide catalyzed by purified enzyme and whereas a sharp decrease in calcium carbonate formation has been noted in purified enzyme samples inhibited by EDTA and acetazolamide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.