Abstract

Background and Purpose: Aflatoxin B1 is one of the main poisonous substances in certain kinds of fungi all over the world. The toxin is a serious health threat to humans and livestock, particularly via DNA damage, and induces multiple cancers. Probiotic agents have confirmed positive beneficial effects in DNA protection against various toxic compounds. In this regard, the present study aimed to investigate the bio-protective effects of a native Lactobacillus plantarum subsp. plantarumNIMBB003 strain isolated from Iranian one-humped camel milk against AflatoxinB1 (AFB1)-induced genotoxicity damage, based on the micronucleus test as a genotoxicity monitoring method. Materials and Methods: In this study, a human male blood sample was treated and incubated with107, 109, and 1011CFU/mL of viable L. plantarum and IC50 dose ofAFB1alone and in combination. Afterward, assessed the rate of production of the micronucleus in bi-nucleated lymphocytes. It must be noted that a p-value of less than0.05 was considered significantly significant. Results: Based on the findings, the combined treatment of the L. plantarum at 1011 and109CFU/mL dose with 5.33±0.57% of the micronuclei fragments had protective effects and significantly decreased the genotoxicity of AFB1 by 76%. Conclusion: According to the findings, it can be concluded that L. plantarum in 109 CFU/mL had high protective potency against AFB1 genotoxicity. Consequently, the use of local, natural, and native protected compounds with antioxidant effects, such as probiotics agents, is one of the objectives of developing a green strategy in macro-management policies for the discovery and production of new medicines and functional foods with protective/therapeutic effects against nutritional and endogenous DNA toxins.

Highlights

  • Background and PurposeAflatoxin B1 is one of the main poisonous substances in certain kinds of fungi all over the world

  • The present study aimed to investigate the bio-protective effects of a native Lactobacillus plantarum subsp. plantarumNIMBB003 strain isolated from Iranian one-humped camel milk against AflatoxinB1 (AFB1)-induced genotoxicity damage, based on the micronucleus test as a genotoxicity monitoring method

  • The present study aimed to investigate the bio-protective effects of the non-pathogenic native strain L. plantarum subsp. plantarum NIMBB003 (LPPN) isolated from camel milk against genotoxicity damage induced by AFB1 in cultured human lymphocytes by micronucleus(MN) assay

Read more

Summary

Introduction

Background and PurposeAflatoxin B1 is one of the main poisonous substances in certain kinds of fungi all over the world. Probiotic agents have confirmed positive beneficial effects in DNA protection against various toxic compounds. In this regard, the present study aimed to investigate the bio-protective effects of a native Lactobacillus plantarum subsp. Results: Based on the findings, the combined treatment of the L. plantarum at 1011 and109CFU/mL dose with 5.33±0.57% of the micronuclei fragments had protective effects and significantly decreased the genotoxicity of AFB1 by 76%. The use of local, natural, and native protected compounds with antioxidant effects, such as probiotics agents, is one of the objectives of developing a green strategy in macromanagement policies for the discovery and production of new medicines and functional foods with protective/therapeutic effects against nutritional and endogenous DNA toxins

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.