Abstract
Nanocomposites are promising in advanced materials for environmental applications due to their ability to boost functionality through synergistic effects. Graphitic carbon nitride (g-C3N4) is renowned for its exceptional characteristics in photocatalysis. This work examines the preparation of g-C3N4 from different precursors, and how the presence of silver nanoparticles (Ag NPs) and silver ions (Ag+) in g-C3N4 matrices improve their combined effect on photocatalytic activity, specifically in the degradation of para-nitrophenol (PNP), a persistent organic pollutant. From urea and melamine precursors for the preparation of g-C3N4, the latter provided a much higher yield. Using an easy synthesis approach, Ag NPs were evenly distributed in the g-C3N4 framework, whereas Ag+ ions were incorporated by an apparent physical procedure. A bio-inspired, environmentally friendly method was also applied to prepare Ag NPs. The nanocomposites showed improved light absorption and separation of charge carriers due to the synergistic interaction between g-C3N4 and Ag species. Using UV and Vis LED light sources, we investigated both pure g-C3N4 and Ag-g-C3N4 catalysts. For breaking down para-nitrophenol, the silver-modified catalysts performed significantly better than pure g-C3N4 in both UV and Vis. The study clarified the functions of Ag NPs and Ag+ ions in enhancing photocatalytic activity by examining their involvement in generating reactive oxygen species and degrading pollutants. This work highlights the capability of g-C3N4-based nanocomposites as effective photocatalysts for environmental remediation. It also explores the benefits of adding silver species to improve performance in degrading pollutants.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have