Abstract
Computing global features based on local features using a bio-inspired framework has shown promising performance. However, for some tough applications with large intra-class variances, a single local feature is inadequate to represent all the attributes of the images. To integrate the complementary abilities of multiple local features, in this paper we have extended the efficacy of the bio-inspired framework, HMAX, to adapt heterogeneous features for global feature extraction. Given multiple global features, we propose an approach, designated as parameterized metric learning, for high dimensional feature fusion. The fusion parameters are solved by maximizing the canonical correlation with respect to the parameters. Experimental results show that our method achieves significant improvements over the benchmark bio-inspired framework, HMAX, and other related methods on the Caltech dataset, under varying numbers of training samples and feature elements.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have