Abstract
The high mobility and dynamic nature of unmanned aerial vehicles (UAVs) pose significant challenges to clustering and routing in flying ad hoc networks (FANETs). Traditional methods often fail to achieve stable networks with efficient resource utilization and low latency. To address these issues, we propose a hybrid bio-inspired algorithm, HMAO, combining the mountain gazelle optimizer (MGO) and the aquila optimizer (AO). HMAO improves cluster stability and enhances data delivery reliability in FANETs. The algorithm uses MGO for efficient cluster head (CH) selection, considering UAV energy levels, mobility patterns, intra-cluster distance, and one-hop neighbor density, thereby reducing re-clustering frequency and ensuring coordinated operations. For cluster maintenance, a congestion-based approach redistributes UAVs in overloaded or imbalanced clusters. The AO-based routing algorithm ensures reliable data transmission from CHs to the base station by leveraging predictive mobility data, load balancing, fault tolerance, and global insights from ferry nodes. According to the simulations conducted on the network simulator (NS-3.35), the HMAO technique exhibits improved cluster stability, packet delivery ratio, low delay, overhead, and reduced energy consumption compared to the existing methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have