Abstract

Lentil, generally known as poor man’s’ meat due to its high protein value is also a good source of dietary fiber, antioxidants and vitamins along with fast cooking characteristics. It could be used globally as a staple food crop to eradicate hidden hunger, if this nutritionally rich crop is further enriched with essential minerals. This requires identification of essential mineral rich germplasm. So, in the present study, a core set of 96 wild accessions extracted from 405 global wild annual collections comprising different species was analyzed to determine its bio-fortification potential. Impressive variation (mg/100 g) was observed for different minerals including Na (30–318), K (138.29–1578), P (37.50–593.75), Ca (4.74–188.75), Mg (15–159), Fe (2.82–14.12), Zn (1.29–12.62), Cu (0.5–7.12), Mn (1.22–9.99), Mo (1.02–11.89), Ni (0.16–3.49), Pb (0.01–0.58), Cd (0–0.03), Co (0–0.63) and As (0–0.02). Hierarchical clustering revealed high intra- and inter-specific variability. Further, correlation study showed positive significant association among minerals and between minerals including agro-morphological traits. Accessions representation from Turkey and Syria had maximum variability for different minerals. Diversity analysis exhibited wide geographical variations across gene-pool in core set. Potential use of the identified trait-specific genetic resources could be initial genetic material, for genetic base broadening and biofortification of cultivated lentil.

Highlights

  • On earth, at least half the human population do not get sufficient daily amounts of essential minerals, a condition leading to ‘hidden hunger’ either due to their low concentrations in commonly eaten staple food crops or their reduced bioavailability [1]

  • We have developed a wild lentil core set from global collections and identified some promising accessions for yield contributing traits including disease resistance [12], which are currently being used for genetic base broadening of the cultivated varieties

  • The data clearly indicated that the range of various minerals was higher in Lens core set accessions

Read more

Summary

Introduction

At least half the human population do not get sufficient daily amounts of essential minerals, a condition leading to ‘hidden hunger’ either due to their low concentrations in commonly eaten staple food crops or their reduced bioavailability [1]. Deficiencies of iron exists within nearly 3.7 billion people worldwide comprising about 60% of the whole population [2], whereas zinc affecting about one-third of the world population [3], are the most common.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call