Abstract

A new class of bio-composite polymer electrolyte membranes comprising chitosan (CS) and certain biomolecules in particular, plant hormones such as 3-indole acetic acid (IAA), 4-chlorophenoxy acetic acid (CAA) and 1-naphthalene acetic acid (NAA) are explored to realize proton-conducting bio-composite membranes for application in direct methanol fuel cells (DMFCs). The sorption capability, proton conductivity and ion-exchange capacity of the membranes are characterized in conjunction with their thermal and mechanical behaviour. A novel approach to measure the permeability of the membranes to both water and methanol is also reported, employing NMR imaging and volume localized NMR spectroscopy, using a two compartment permeability cell. A DMFC using CS-IAA composite membrane, operating with 2M aqueous methanol and air at 70°C delivers a peak power density of 25 mW/cm2 at a load current density of 150 mA/cm2. The study opens up the use of bio-compatible membranes in polymer-electrolyte-membrane fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.