Abstract
Objectives: In order to review both the effects of sewage sludge dewaterability and deodorizing ability in the existing advanced sewage treatment process, BIO-CLOD (a solidified mixture of 10% Bacillus concentrate and inorganics) was used as an inorganic conditioner effective for deodorization treatment in addition to the removal of organic matter and nutritive salts. Methods: Sludge dewaterability was evaluated using specific resistance to filtration (SRF) experiments with six agitators and two types of commercially available BIO-CLOD; one that is made by grinding solid matter (powdered BIO-CLOD) and one that has been obtained by sieving a separation with a particle diameter of 100 mesh (100 mesh BIO-CLOD). For deodorization odor treatment experiments, 20 g of commercially available solid BIO-CLOD was submerged in four liters of sewage sludge and mixed and agitated for 45 days. Results: When BIO-CLOD was injected into sewage sludge to experimentally compare specific resistance to filtration (SRF), the optimum amount of BIO-CLOD to be injected was shown to be 2% w/v and the SRF value in this case was 1.35x 10m/kg. pH changes following BIO-CLOD injection were within 6.5-7.0. By 14 days after submerging BIO-CLOD into the sewage sludge to evaluate its deodorizing ability, H2S decreased by 68% and methyl mercaptan decreased by 74%. By 45 days after the submergal, both items decreased by 100%, indicating deodorizing ability. Conclusion: To compare the levels of dewaterablity of sewage sludge at different particle sizes of inorganic conditioner, powdered BIO-CLOD, particle size 100 mesh BIO-CLOD, and bentonite were tested. It could be seen that as the powdered BIO-CLOD increased, the precipitability increased up to 62% in 30 minutes. As an inorganic conditioner, BIO-CLOD was identified as a stable sludge conditioner that does not affect pH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.