Abstract

Radionuclides from the Chernobyl accident in 1986 still circulate in the Baltic marine ecosystem and activity levels in water, sediments and fish species such as herring and perch are monitored annually. However, the activity levels of radionuclides in marine mammals have only been sporadically reported. Tissue samples from a museum collection were analysed in two species of seals, and the trends over time in activity level of radioactive caesium (Cs-137) after the Chernobyl accident were reconstructed. We also performed a literature review summarizing activity levels in marine mammals world-wide. We found activity concentrations of Cs-137 in Baltic ringed seals and grey seals to be elevated also in the most recent samples, and during the entire study period measurements ranged between 19 and 248 Bq/kg wet weight. A declining trend in time over the last 30 years follow the general trend of decline in activity levels in other Baltic biota. Accumulation was found to be species specific in the two seal species studied, with 9 times higher activity concentration in grey seals compared to herring, and 3.5 times higher in ringed seals compared to herring. We discuss potential paths and rates of bioaccumulation of radioactive caesium in the Baltic Sea including species specific prey choice of the two seal species and estimate life time exposure. The study contributes one important piece of information to predictive models in risk assessments for nuclear accidents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.