Abstract

The pathogenic dengue virus (DV) is a growing global threat, particularly in South East Asia, for which there is no specific treatment available. The virus possesses a two-component (NS2B/NS3) serine protease that cleaves the viral precursor proteins. Here, we performed molecular dynamics simulations of the NS2B/NS3 protease complexes with six peptide substrates (capsid, intNS3, 2A/2B, 4B/5, 3/4A and 2B/3 containing the proteolytic site between P1 and P1′ subsites) of DV type 2 to compare the specificity of the protein-substrate binding recognition. Although all substrates were in the active conformation for cleavage reaction by NS2B/NS3 protease, their binding strength was somewhat different. The simulated results of intermolecular hydrogen bonds and decomposition energies suggested that among the ten substrate residues (P5–P5′) the P1 and P2 subsites play a major role in the binding with the focused protease. The arginine residue at these two subsites was found to be specific preferential binding at the active site with a stabilization energy of <−10kcalmol−1. Besides, the P3, P1′, P2′ and P4′ subsites showed a less contribution in binding interaction (<−2kcalmol−1). The catalytic water was detected nearby the carbonyl oxygen of the P1 reacting center of the capsid, intNS3, 2A/2B and 4B/5 peptides. These results led to the order of absolute binding free energy (ΔGbind) between these substrates and the NS2B/NS3 protease ranked as capsid>intNS3>2A/2B>4B/5>3/4A>2B/3 in a relative correspondence with previous experimentally derived values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call