Abstract

The binding of a cationic surfactant, dodecylpyridinium (C12Py) chloride, with a low-charge-density poly (methacrylic acid) (PMA) was investigated in buffer solutions under the condition of constant pH. The binding isotherms with PMA consisted of two and three steps at a pH lower and higher than 3.2, respectively. Bindings in the first step were independent of pH and this step was considered to correspond to the solubilization of the hydrocarbon chains of C12Py into the nonpolar region of the compact form of PMA. This is the indication of the compact form from the binding isotherm. At pH higher than 3.2, the second step was discriminated and it depended on the pH. In the third step, a sharp rise in the degree of binding (β) was observed accompanying the solubilization of the precipitates of the PMA–C12Py complex. The binding with poly(acrylic acid) (PAA) and PMA in conventional unbuffered NaCl solutions was also examined and the pH profile of the solution during the binding process was determined. In the case of unbuffered NaCl solutions, the binding with PAA took place cooperatively at the critical association concentration (cac). The binding isotherm consisted of two steps and the pH decreased with the increase in β. The binding isotherm of PMA, on the other hand, consisted of three steps: the pH decreased slightly in the first step and considerably in the second step with the increase in β but it increased with β in the third step, exhibiting a pH minimum around 3.2. The binding in the first step coincided with that obtained in the buffered solutions. Linear relationships between β and the pH were found for both polymers. In the case of PMA, no cac was observed in both buffered and unbuffered NaCl solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.