Abstract

We investigate the Brownian dynamics of a nanoparticle bound to a thermally undulating elastic membrane. The ligand-functionalized nanoparticle is assumed to interact monovalently with the receptor expressed on the membrane. In order to resolve the nanoparticle transient motion subject to the instantaneous membrane configuration in a consistent manner, we employ a set of coupled Langevin equations that simultaneously incorporate the hydrodynamic effects, ligand-receptor binding interaction, intramembrane elastic forces, and thermal fluctuations. We show that the presence of a deformable, elastic fluid membrane not only affects the dynamics of a bound nanoparticle but also alters the effective binding potential felt by the nanoparticle. In contrast to a nanoparticle bound to a flat surface, the oscillatory characteristics of the nanoparticle velocity autocorrelation function are suppressed and transition to an anticorrelated long-time tail. Moreover, the nanoparticle position fluctuation becomes more coherent with that of the membrane binding site, and the width of the distribution of the nanoparticle distance from the membrane decreases with increasing membrane bending rigidity. By introducing a locally harmonic, bistable potential as an effective potential for the ligand-receptor pair, the rate of nanoparticle transitioning between two bound states is facilitated by membrane undulations as a result of stronger positional variations associated with the nanoparticle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.