Abstract

We recently reported that a glycopeptidomimetic molecule significantly delays the fibrillization process of Aβ42 peptide involved in Alzheimer's disease. However, the binding mode of this compound, named 3β, was not determined at the atomic scale, hindering our understanding of its mechanism of action and impeding structure-based design of new inhibitors. In the present study, we performed molecular docking calculations and molecular dynamics simulations to investigate the most probable structures of 3β complexed with Aβ protofibrils. Our results show that 3β preferentially binds to an area of the protofibril surface that coincides with the protofibril dimerization interface observed in the solid-state NMR structure 5KK3 from the PDB. Based on these observations, we propose a model of the inhibition mechanism of Aβ fibrillization by compound 3β.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.